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Improving random walk performance
Ilya Safro, Paul Hovland, Jaewook Shin, and Michelle Strout

Abstract—Random walk simulation is employed in many experimental algorithmic applications. Efficient execution on
modern computer architectures demands that the random walk be implemented to exploit data locality for improving the
cache performance. In this research, we demonstrate how different one-dimensional data reordering functionals can be
used as a preprocessing step for speeding the random walk runtime.

Index Terms—data reordering, random walk, irregular memory access, cache performance.

F

1 INTRODUCTION

Random walk simulation is an important in-
gredient of many scientific applications. It is
employed, for example, in data clustering [17],
image segmentation [15], circuit clustering [3],
and computation of different kinds of data sim-
ilarities and scorings [9], [21]. Usually, the re-
lationships between the data elements in such
applications can be modeled by a graph, either
directed or undirected, with a relevant portion
of information assigned to each node and edge.
Typically, the simulation (or the execution) of a
random walk consists of sequentially visiting a
set of adjacent nodes and their neighborhoods
within some small distance. The computational
complexity of this process can be compared to
that of pointwise relaxation methods such as
Jacobi or Gauss-Seidel.

For modern architectures on which random
walk applications are executed, accessing main
memory is an order of magnitude slower than
accessing cache, which is smaller but faster
memory closer to the processor. Thus, one
should exploit cache as much as possible for
efficient execution of such applications. For
applications with regular memory accesses, a
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huge body of research work has been devoted
to loop transformations targeting efficient use
of cache [2], [7], [10], [13], [14], [19], [25], [26],
and dramatic performance improvement has
been achieved. For applications with irregular
memory accesses such as random walk, how-
ever, a better cache operation is more compli-
cated task if there is a need in improving mem-
ory access time. In [24], Strout and Hovland
described runtime reordering transformations
for data in memory and for iterations of loops
for better use of cache in applications with
irregular memory accesses.

In this paper we demonstrate how the im-
provement of data locality can influence the
performance of a random walk simulation,
which typically represents a highly irregular
part of scientific codes. The data locality is im-
proved by minimizing various linear ordering
metrics [18] of a data graph. Since the cache
memory architecture represent ”a collection of
one-dimensional lines” [16], the linear order-
ing graph embeddings can serve as possible
models for minimizing the distance between
the data parts in memory access processes.
Different linear ordering functionals can lead
to data localities that are contrary to each other.
Besides the improving of a random walk per-
formance, the additional goal of this work is
to check the difference between several ways
of minimizing the local contribution of a ver-
tex to the global ordering (in a context of
data locality) by: (a) bounding maximum edge
length (∞-sum functional); (b) reducing the
average vertex contribution (2-sum functional);



SUBMITTED TO INTERNATIONAL CONFERENCE ON SCIENTIFIC COMPUTING 2009 2

(c) measuring a real distance between two
nodes (1-sum functional) and other. In contrast
to the approach proposed in [24], here the
data reordering is done as a preprocessing of a
particular application that uses random walk.
Thus there is no need to know the runtime data
access pattern but only the connectivity of the
graph on which the random walk is performed.

2 DEFINITIONS AND METHODS

Consider a random walk [20] on an edge-
weighted directed graph G = (V,E) with a
weighting function on the set of edges w : E →
R+∪{0}. Denote by wij the nonnegative weight
of the directed edge ij between nodes i and j.
If ij /∈ E, then wij = 0.

Random walk may be viewed as a process
of sequential vertex visiting. Starting at node
i0, at the tth step of a walk, we move to it, one
of the it−1’s neighbors, with probability

Pt =
wit−1it∑

it∈N(it−1)wit−1it

, (1)

where N(i) = {j ∈ V : ij ∈ E}.
We have tested three data reordering metrics

based on the p-sum functionals [18] with p =
1, 2 and ∞, and the workbound functional [4].
Let π be a bijection

π : V −→ (1, 2, ..., n) .

The following functional is minimized for the
minimum p-sum problem over all possible per-
mutations π:

σp(G, π) =
∑
ij∈E

(
wij|π(i)− π(j)|p

)1/p
. (2)

In particular, we concentrate on the minimum
bandwidth problem (when p = ∞), which
seeks a linear layout that minimizes the maxi-
mal stretched edge, namely,

bw(G) = min
π

max
ij∈E

wij|π(i)− π(j)| . (3)

The minimization functional of the work-
bound reduction problem is defined as

wb(G, π) =
∑
i

max
j

π(j)<π(i)

wij(π(i)− π(j))2 . (4)

While the 1-sum functional is known metric
for data locality improvement algorithms [24],

other functionals were not used for this pur-
pose. In particular, we are interested in the
workbound functional which represents a com-
bination of two p-sum functionals and may
be viewed as a measure for minimizing the
maximum edge length per vertex.

Because of the NP-hardness [11], [12] of min-
imization of the above functionals, we used
four multilevel solvers [23] for approximate
minimization of the functionals. These solvers
provide orderings that are at least comparable
to the best-known heuristics, while keeping
linear running time. In addition, we tested the
Cuthill-McKee bandwidth reduction algorithm,
which produces results of significantly poorer
quality (in comparison to many other state-of-
the-art heuristics [23]) but is extremely fast and
easily implementable. We used the symmetric
version of the reverse Cuthill-McKee solver
implemented in Matlab as function ’symrcm’.

Denote by δ, ∆ and δ, the minimum, maxi-
mum and average vertex degree of G, respec-
tively.

3 A RANDOM WALK SIMULATION ALGO-
RITHM

Algorithm 1 shows simulation of a random
walk that we tested. In general, the tight upper
bound of the random walk cover time is very
big [8] to perform a full simulation, and we
used a restart strategy to cover fully each graph
faster. The algorithm consists of 1000 restart
iterations of a random walk in order to ensure
better coverage of graphs in case some of them
contain hidden ’highly connected’ components,
that is, the components that ensure with high
probability that the hitting time inside them is
much smaller. Each sweep of a random walk
consists of 100|V | steps, and in general we did
not observe a situation when the graph was not
covered by 1000 sweeps. It is important to indi-
cate that several experiments with significantly
bigger number of steps and iterations were per-
formed. However, the improvement obtained
during the longer runs was very similar to
that obtained with the mentioned constants.
The calculation performed at each step of the
random walk is computationally comparable to
one step of the Gauss-Seidel process.
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Input: graph G = (V,E)
for i =1 to 1000 do
∀ i ∈ V define wv = rand();
∀ ij ∈ E wij = rand();
t = 0;
i← randomly chosen vertex;
while t < 100|V | do

wi = wi +
∑

ij wijwj/
∑

ij wj ;
i← randomly chosen vertex among
the neighbors of i with probability
Pt;
t = t+ 1;

end
end

Algorithm 1: Random walk with 1000 restarts

In many implementations a graph model-
based data structure contains an appropriate
amount of data at each node or edge. Two
data allocation models were tested in order to
compare the improved data locality reordering
schemes and metrics. In the first homogeneous
allocation model (HM) the amount of data (in
bytes) stored at each node is slightly bigger
than the maximum node degree on G, and
there is no difference between the memory
performances on high- and low-degree nodes.
Low-degree nodes were artificially filled by
useless information and this information was
accessed while visiting these nodes. The second
model, called nonhomogeneous (NHM), allows
one to keep only a few numbers of double
precision, i.e., the most of the memory space
allocated at each node is occupied by the point-
ers and information on its neighbors. In both
models, the access time of a next neighbor
node was O(1), and the graphs were stored
in continuous segments of memory without
accessing a hard disk.

4 EXPERIMENTAL RESULTS

To estimate how the runtime of a random
walk behaves with the improved data locality,
we compared the runtime of a random walk
with and without reordering. The experimental
results are summarized in Figures 1 and 2
that represent the comparisons of the HM and
NHM models, respectively.

Fig. 1. Homogeneous model. Each 5-tuple of
bars corresponds to the five ratios between the
runtime measurements of ordered and disor-
dered graph, respectively. The first (2nd, 3rd,
4th, and 5th) bar correspond to the ratio be-
tween the runtime of the ordered graph by ap-
plying 1-sum (workbound, 2-sum, bandwidth,
and Cuthill-Mckee) algorithm and the runtime of
the disordered graph.

We chose 15 graphs (see Table 1) of different
size and structure from [5] and measured the
runtime of the same random walk on the ran-
domly disordered graphs, originally ordered,
and on the ordered by five previously men-
tioned heuristics. All experiments were per-
formed under operating systems Linux and
Windows XP. In general, no difference was
observed between these two cases.

Each 5-tuple of bars (presented in Figures
1 and 2) corresponds to the five ratios be-
tween the runtime measurements of ordered
and disordered graph, respectively. The first
(2nd, 3rd, 4th, and 5th) bar correspond to the
ratio between the runtime of the ordered graph
by applying 1-sum (workbound, 2-sum, band-
width, and Cuthill-Mckee) algorithm and the
runtime of the disordered graph.

The most successful metric for the data lo-
cality improvement for a random walk was
the 1-sum functional with the corresponding
minimization algorithm [22]. The next most
competitive heuristic was the Cuthill-Mckee
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Fig. 2. Non-homogeneous model. Each 5-tuple
of bars corresponds to the five ratios between
the runtime measurements of ordered and dis-
ordered graph, respectively. The first (2nd, 3rd,
4th, and 5th) bar correspond to the ratio be-
tween the runtime of the ordered graph by ap-
plying 1-sum (workbound, 2-sum, bandwidth,
and Cuthill-Mckee) algorithm and the runtime of
the disordered graph.

Graph |V | |E| δ ∆ δ
diw0079 11821 22516 1 4 3.81
horse 48485 145449 3 16 6.00
f117 48518 293581 3 39 12.10
nasa4704 4704 50026 5 41 21.27
torso 168930 1254712 6 46 14.85
finan512 74752 261120 2 54 6.99
onetone2 36057 201173 1 66 11.16
plgr10000 2 8467 13661 1 77 3.23
net100 28084 966960 2 180 68.86
bcsstk30 28924 1007284 3 218 69.65
fxm4 6 18892 239476 3 308 25.35
memplus 17753 41534 1 352 4.68
3dtube 45330 1584144 9 2363 69.89
p2p 7 11174 23409 1 2389 4.19
gupta3 16783 4653322 32 14671 554.53

TABLE 1
Experimental graphs

algorithm which also produces the 1-sum or-
derings at compatible costs for graphs 1, 2, 4,
6, and 14. However, there are several graphs
with big ratio gaps in favor of the 1-sum func-
tional. Although the Cuthill-Mckee algorithm
is fast and can be easily implemented, it has
a serious disadvantage: its sensitivity to the
initial vertex ordering it starts from can lead
to many unexpected problems. On the other
hand, the runtime of 1-sum heuristics [22] is
also linear. Thus, we conclude that having a
good-enough algorithm for the minimization
of 1-sum functional can lead to the best results
among the tested functionals.

Experimenting with power-law graphs.
Graphs with vertex degree sequence propor-
tional to the power-law distributions model
many real-life processes, such as Internet con-
nectivity, biological networks, and various so-
cial networks. All previously mentioned tech-
niques of data reordering were applied to a set
of ten power-law graphs of different sources.
The differences in the observed improvement
among five reordering methods were not as
big as they were for other general graphs.
Moreover, it is almost impossible to distin-
guish between three 1(2,∞)-sum minimizers
and Cuthill-Mckee algorithm, which exhibited
an improvement between 0.80 and 0.83 in terms
of ratios in Figures 1 and 2. The improvement
obtained by the minimum workbound solver
was less significant: 0.85 on average.

Experimenting with original orderings. To
complete the comparison of different order-
ings, we examined the original graph order-
ings. In practice, the original ordering of a
graph depends on the database. However, typ-
ically, applications use their own graphs that
are created by local connection ordering (BFS-
or DFS-based orderings), that is, according to
the order of vertex creation. This ordering can
be much worse (in terms of minimizing all
previously mentioned metrics) if the graph (the
finite element or another structure) is created
by a parallel algorithm when different portions
of data from different regions are saved in
parallel. Indeed sometimes this ordering can
have even worse minimization results than
randomized expected costs. Such orderings can
be suitable when the graphs have very strong
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local, but not global, connectivity. The situation
with local connection orderings turns out to be
much worse when the graph has a structure
that is not very similar to the finite element,
for example when there are global connections
that can destroy the beauty of local connec-
tion orderings. In general, in this paper a ran-
domized ordering is used as a more meaning-
ful upper bound than different local ordering
methods (see [6]) that have a big variability.
However, we compared our results with those
by original ordering schemes and observed that
the difference between runtime after a reverse
Cuthill-McKee algorithm and randomized or-
dering and between runtime obtained by origi-
nal ordering and randomized ordering is about
30%. Thus, according to our observations, the
reverse Cuthill-McKee algorithm represents the
best version among different original local or-
derings.

4.1 Discussion

As a first stage of this work, we have tried to
improve the results obtained in [24] in which
different metrics and reordering algorithms
were proposed and tested. However, although
the improved ordering reduces these metrics
by up to 15% (in the average), we did not
observe an improvement in runtime when we
applied state-of-the-art heuristics to transfor-
mations reordering for the finite-element in-
stances from [24].

To understand the experimental result
shown in Figure 2, we performed the same
experiment again but on another machine
and measured hardware performance counters
using PAPI [1]. The machine has 2.5 GHz
AMD Phenom processors, and the memory
hierarchy incorporates three levels of cache
(64 KB L1 data cache, 512 KB L2 cache, 2
MB L3 cache) and 4 GB of memory. Level 1
cache is fastest and closest to the processor
but smallest whereas level 3 cache is largest
in size but slowest next to the main memory.
Another important part of memory hierarchy
is translation lookaside buffer (TLB), which
keeps the mapping between virtual addresses
issued by the processor and the corresponding
physical addresses. If the mapping is not found

Fig. 3. Cache and TLB misses. Each graph
corresponds to 5-tuple of bars. These bars
show the numbers of data misses: (bar1)-
L1 Cache Misses; (bar2)-L2 Cache Misses;
(bar3)-L3 Cache Misses; (bar4)-TLB Misses;
and (bar5)-Total cycles.

in TLB, the page table in main memory has
to be referenced and the mapping is brought
into TLB similar to the way data cache works.
The machine we used in this experiment has
48 entries at L1 data TLB and 512 entries at L2
data TLB.

Figure 3 shows cache and TLB misses for
the reordered graphs normalized by the cor-
responding misses for the randomly shuffled
graphs. The graphs on the x-axis are sorted
in decreasing order of performance improve-
ments (or increasing order of normalized run-
times) of the reordered graphs over the shuf-
fled ones so that general trends are easier to
see. In all cases, cache and TLB misses have
decreased for the reordered graphs explaining
the performance improvements. Also, for the
larger performance improvements in the left
side of the graph, the reductions in TLB misses
are larger, with the exception of gupta3.

Since our graph reordering improves the
data locality, we checked the relationship be-
tween the performance and working data size.
Figure 4 shows graph sizes in memory nor-
malized by the biggest size for gupta3 and
1-sum ordering costs normalized by the 1-sum



SUBMITTED TO INTERNATIONAL CONFERENCE ON SCIENTIFIC COMPUTING 2009 6

Fig. 4. Graph size and 1-sum. Each graph
corresponds to 3-tuple of bars. The first bar rep-
resents the graph size; the second bar shows
1-sum minimization result; and the third bar
corresponds to the total cycles number.

ordering costs of the unoptimized graphs. In
general, for the larger speedups on the left
side of the graph, graph sizes are larger and
1-sum ordering costs are smaller. We expect
that the benefit of the technique proposed in
this paper increases as the graph size gets
bigger, machine’s cache size gets smaller, and
the normalized 1-sum is smaller.

5 CONCLUSIONS

Our research demonstrates how to improve the
data locality for a random walk simulation,
which can be a highly irregular part of scientific
code. In particular, we conclude that minimiz-
ing a 1-sum functional at the preprocessing
stage can lead to the best performance results.
On the other hand, a reverse Cuthill-McKee
reordering scheme can produce slightly longer
runtime simulation but its implementation is
extremely easy.

The main difference between qualities of the
reverse Cuthill-McKee and multilevel solvers is
that the multilevel solver allows to improve a
global ordering rather than the local only. Thus,
if the experimental instance has high local con-
nectivity only then Cuthill-McKee algorithm is
preferable for use, otherwise it is very likely to

obtain much better runtime with a multilevel
1-sum solver.

During the experiments, different linear or-
dering functionals were tested. It turns out that
the most weak functionals are those that lead to
the minimization of an average vertex contri-
bution to the total energy of the linear ordering
(2-sum and workbound). On the other hand,
the functionals and algorithms that minimize a
”real line distance” between data parts in cache
can significantly imrpove the perfirmance (1-
sum functional and Cuthill-McKee algorithm).
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